

Landscape Irrigation Water Management Challenges and Techniques

irrigation scheduler mobile

Soil Water Dashboard

Field:

N Pod Pasture, 2014; Grass (Pasture)

This Morning's 0.9 in. Soil Water or Deficit: 5.4 hrs Today's 0.00 Irrigation: hrs I Irrigated Today: hrs

Save

Green is good. Crops increasingly stressed below green.

Dashboard

Daily Budget Table

Soil Water Chart

More Charts

What information do you have?

Benefits of water management

Benefits

Soil-Water-Plant relationships

Soil texture

How does it feel in your hand?

Loam is a combination of all these.

Map Unit Name: Cleman very fine sandy

Symbol: 34

loam

▲ Map Unit Composition

100% - Cleman

Geomorphic Position: alluvial flats

Map Unit Data

Map Unit Key: 68807

Type: Consociation [?]

Farmland Class: Prime farmland if irrigated

Available Water Storage (0-100cm): 14.14 cm

Max Flood Freq: None

Drainage Class (Dominant Condition): Well drained

Drainage Class (Wettest Component): Well drained

Proportion of Hydric Soils: 0%

Min. Water Table Depth (Annual): n/a

Min. Water Table Depth (April-June): n/a

Min. Bedrock Depth: n/a

Survey Metadata: wa025 [NRCS Export: Sep 14 2015]

→ / / 受力等等的。

Textural	Classes
----------	---------

Available Water Capacity in Inches/Foot of Depth

Coarse Sands	0.25 -	0.75
--------------	--------	------

Water spreads differently in different soil textures

penetration

WASHINGTON STATE
UNIVERSITY
SOIL PHYSICS

LOAM

CLAYEY

SAME AMOUNT WATER APPLIED

SANDY

Where do plants get their water from in the root zone?

Plant rooting depths vary

PLANT FEEDER ROOT DEPTHS* **1**

CROP	FEEDER ROOT DEPTH	CROP	FEEDER ROOT DEPTH
ALFALFA	3 to 6 feet	NUTS	3 to 6 feet
BEANS	2 feet	ONIONS	1 1/2 feet
BEETS	2 to 3 feet	ORCHARD	3 to 5 feet
BERRIES (Cane)	3 feet	PASTURE (Grasses)	1 1/2 feet
CABBAGE	1 1/2 to 3 feet	PASTURE (w/Clover)	2 feet
CARROTS	"1 1/2" to 2 feet	PEANUTS	2 feet
CORN	2 1/2 feet	PEAS	2 1/2 feet
COTTON	4 feet	POTATOES	2 feet
CUCUMBERS	1 1/2 feet	SOY BEANS	2 feet
GRAIN	2 to 2 1/2 feet	STRAWBERRIES	1 to 1 1/2 feet
GRAIN, SORGHUM	2 1/2 feet	SWEET POTATOES	3 feet
GRAPES	3 to 6 feet	TOBACCO	2 1/2 feet
LETTUCE	1 foot	TOMATOES	3 to 4 feet
MELONS	2 1/2 to 3 feet		

^{*}Majority of Feeder Roots

ET

Soil is a Water & Nutrient Reservoir

Irrigation or Precipitation Deep Percolation = Water In = Overflow Field Capacity (full) Soil Water Content (soil moisture measurement) Water Holding Capacity = Size of Reservoir ET =Water Out Wilting Point

(empty)

How much water can you store?

How much water can it hold? When will it be empty?

Water use by your landscape

ET

Plant Water Use

2015 ET (inches) for grass in Ephrata

Weather.wsu.edu

ET email to your home

Wed 4/13/2016 5:10 PM

Andy McGuire <amcguire@homenetnw.net>

FW: Ephrata ET

To McGuire, Andrew

----Original Message----

From: weather@wsu.edu [mailto:weather@wsu.edu]

Sent: Monday, April 11, 2016 5:56 AM

To: amcguire@homenetnw.net

Subject: Ephrata ET

Evapotranspiration Report Data Extracted: 2016-04-11

Station: Ephrata

Lat: 47.18 Lng: 47.18 Elevation: 1224

Date Range from 2016-04-04 to 2016-4-11.

Accumlated precip for selected period is: 0.00 Inches.

Date, ETr (in), ETo (in), Accu ETr (in), Accu ETo (in).

2016-04-04, 0.18279, 0.12891, 0.18279, 0.12891,.

Develop a simple system

Levels of Irrigation Scheduling

- Same schedule all season / Guessing
- Based on watching plants and sprinkler system knowledge
- Based on ET (AgWeatherNet) and knowledge of application rates of sprinkler system
- + Soil moisture monitoring

Putting it all together...

1. Soil and plant information

Texture, root depth >> Available water capacity

Fine Sand

12" rooting depth

= 0.8" water

BUT, 100% depletion will stress plants

Use 50% in most situations = 0.4" water

Putting it all together...

- Soil and plant information
 0.4" water
- 2. Water use information

ET from monitoring

Soil

ET for week = 0.86" for grass

Need to irrigate!

The can method for measuring uniformity – a low-cost approach

Putting it all together...

- Soil and plant information
 0.4" AWC
- 2. Water use information ET = 0.86" for grass
- Sprinkler run time

Average depth in cans: 0.8" in 2 hours

0.4" per hour

Water once a week for a 50, 60, 70 min?

Days Between Lawn Irrigations

	Soil Type		
Month:	Sandy	Sandy Loam	Loam/Clay
April	4	6	7
May	3	5	6
June	2	4	5
July	2	3	5
August	3	4	5
September	4	5	7
October	5	8	11

Fine tune what you are doing...

- Reduce run time by 10%
- Observe landscape
- Reduce run time by 10%

Weather.wsu.edu

irrigation scheduler mobile

Soil Water Dashboard

Field:

N Pod Pasture, 2014; Grass (Pasture)

This Morning's	0.9 in.
Soil Water	or
Deficit:	5.4 hrs
Today's	0.00
Irrigation:	hrs
I Irrigated Today	/: hrs
_	

Save

Green is good. Crops increasingly stressed below green.

Dashboard

Daily Budget Table

Soil Water Chart

More Charts

Sources of slides and information

- Soil texture: Casoilresource.lawr.ucdavis.edu/soilweb/
- WSU Ag Weather Net:
 - http://weather.wsu.edu/
- Sources of some slides and information:
 - Troy Peters, WSU Irrigation Specialist, Prosser, WA
 - Got Water? OSU and U. of Nevada Extension from Living on the Land curricula.
 - Lori D. Palmquist, Irrigation Basics for Homeowners